Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Braz. j. med. biol. res ; 44(9): 947-957, Sept. 2011. ilus
Article in English | LILACS | ID: lil-599673

ABSTRACT

During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.


Subject(s)
Animals , Humans , Rats , Endothelial Cells/metabolism , Nitric Oxide Donors/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/biosynthesis , Ruthenium Compounds/metabolism , Endothelium, Vascular/metabolism , Hypertension/physiopathology , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/pharmacology , Vasodilation/physiology
2.
Braz. j. med. biol. res ; 42(1): 87-93, Jan. 2009. ilus, tab, graf
Article in English | LILACS | ID: lil-505424

ABSTRACT

Nitric oxide (NO) donors produce NO-related activity when applied to biological systems. Among its diverse functions, NO has been implicated in vascular smooth muscle relaxation. Despite the great importance of NO in biological systems, its pharmacological and physiological studies have been limited due to its high reactivity and short half-life. In this review we will focus on our recent investigations of nitrosyl ruthenium complexes as NO-delivery agents and their effects on vascular smooth muscle cell relaxation. The high affinity of ruthenium for NO is a marked feature of its chemistry. The main signaling pathway responsible for the vascular relaxation induced by NO involves the activation of soluble guanylyl-cyclase, with subsequent accumulation of cGMP and activation of cGMP-dependent protein kinase. This in turn can activate several proteins such as K+ channels as well as induce vasodilatation by a decrease in cytosolic Ca2+. Oxidative stress and associated oxidative damage are mediators of vascular damage in several cardiovascular diseases, including hypertension. The increased production of the superoxide anion (O2-) by the vascular wall has been observed in different animal models of hypertension. Vascular relaxation to the endogenous NO-related response or to NO released from NO deliverers is impaired in vessels from renal hypertensive (2K-1C) rats. A growing amount of evidence supports the possibility that increased NO inactivation by excess O2- may account for the decreased NO bioavailability and vascular dysfunction in hypertension.


Subject(s)
Animals , Rats , Cyclic GMP-Dependent Protein Kinases/drug effects , Muscle, Smooth, Vascular/drug effects , Nitric Oxide Donors/pharmacology , Ruthenium/pharmacology , Aorta/drug effects , Calcium Channels/drug effects , Calcium Channels/physiology , Cyclic GMP-Dependent Protein Kinases/metabolism , Hypertension, Renal/physiopathology , Muscle Relaxation , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/physiopathology , Nitric Oxide/metabolism , Potassium Channels/drug effects , Potassium Channels/physiology , Ruthenium/chemistry , Signal Transduction/drug effects , Time Factors , Vasodilation/drug effects , Vasodilation/physiology
3.
Braz. j. med. biol. res ; 36(1): 97-104, Jan. 2003. graf
Article in English | LILACS | ID: lil-326315

ABSTRACT

The aim of the present study was to investigate the effects of high concentrations of KCl in releasing noradrenaline from sympathetic nerves and its actions on postsynaptic alpha-adrenoceptors. We measured the isotonic contractions induced by KCl in the isolated rat anococcygeus muscle under different experimental conditions. The contractile responses induced by KCl were inhibited by alpha-adrenoceptor antagonists in 2.5 mM Ca2+ solution. Prazosin reduced the maximum effect from 100 to 53.9 ± 10.2 percent (P<0.05) while the pD2 values were not changed. The contractile responses induced by KCl were abolished by prazosin in Ca2+-free solution (P<0.05). Treatment of the rats with reserpine reduced the maximum effect induced by KCl as compared to the contractile responses induced by acetylcholine from 339.5 ± 157.8 to 167.3 ± 65.5 percent (P<0.05), and increased the pD2 from 1.57 ± 0.01 to 1.65 ± 0.006 (P<0.05), but abolished the inhibitory effect of prazosin (P<0.05). In contrast, L-NAME increased the contractile responses induced by 120 mM KCl by 6.2 ± 2.3 percent (P<0.05), indicating that KCl could stimulate the neurons that release nitric oxide, an inhibitory component of the contractile response induced by KCl. Our results indicate that high concentrations of KCl induce the release of noradrenaline from noradrenergic neurons, which interacts with alpha1-adrenoceptors in smooth muscle cells, producing a contractile response in 2.5 mM Ca2+ (100 percent) and in Ca2+-free solution, part of which is due to a direct effect of KCl on the rat anococcygeus muscle


Subject(s)
Animals , Rats , Adrenergic Antagonists , Adrenergic Fibers , Muscle Contraction , Muscle, Smooth , Norepinephrine , Potassium Chloride , Adrenergic Fibers , Anal Canal , Dose-Response Relationship, Drug , Muscle, Smooth , Neurons , Potassium Chloride , Rats, Wistar
4.
Braz. j. med. biol. res ; 30(3): 315-23, Mar. 1997. ilus
Article in English | LILACS | ID: lil-191343

ABSTRACT

Calcium ions (Ca2+) trigger the contraction of vascular myocytes and the level of free intracellular Ca2+ within the myocyte is precisely regulated by sequestration and extrusion mechanisms. Extensive evidence indicates that a defect in the regulation of intracellular Ca2+ plays a role in the augmented vascular reactivity characteristic of clinical and experimental hypertension. For example, arteries from spontaneously hypertensive rats (SHR) have an increased contractile sensitivity to extracellular Ca2+ and intracellular Ca2+ levels are elevated in aortic smooth muscle cells of SHR. We hypothesize that these changes are due to an increase in membrane Ca2+ channel density and possibly function in vascular myocytes from hypertensive animals. Several observations using various experimental approaches support this hypothesis: 1) the contractile activity in response to depolarizing stimuli is increased in arteries from hypertensive animals demonstrating increased voltage-dependent Ca2+ channel activity in hypertension; 2) Ca2+ channel agonists such as Bay K 8644 produce contractions in isolated arterial segments from hypertensive rats and minimal contraction in those from normotensive rats; 3) intracellular Ca2+ concentration is abnormally increased in vascular myocytes from hypertensive animals following treatment with Ca2+ channel agonists and depolarizing interventions, and 4) using the voltage-clamp technique, the inward Ca2+ current in arterial myocytes from hypertensive rats is nearly twice as large as that from myocytes of normotensive rats. We suggest that an alteration in Ca2+ channel function and/or an increase in Ca2+ channel density, resulting from increased channel synthesis or reduced turnover, underlies the increased vascular reactivity characteristic of hypertension.


Subject(s)
Rats , Animals , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Calcium Channels/physiology , Calcium/metabolism , Hypertension/physiopathology , Muscle, Smooth, Vascular/physiology , Vascular Resistance/physiology , Calcium Channel Agonists/pharmacology , Calcium Channels/drug effects , Patch-Clamp Techniques , Rats, Inbred SHR , Rats, Wistar
5.
Braz. j. med. biol. res ; 30(2): 257-67, Feb. 1997. ilus, graf
Article in English | LILACS | ID: lil-188436

ABSTRACT

We tested the hypothesis that cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ -ATPase, increases intracellular Ca2+ concentration ([Ca2+]i) in aortic myocytes and that the increase in [Ca2+]i is higher in aortic cells from deoxycorticosterone acetate (DOCA)-hypertensive rats. Male Sprague-Dawley rats, 250-300 g, underwent uninephrectomy, received a silastic implant containing DOCA (200 mg/kg) and had free access to water supplemented with 1.0 per cent NaCl and 0.2 per cent KCl. Control rats were also uninephrectomized, received normal tap water, but no implant. Intracellular Ca2+ measurements were performed in aortic myocytes isolated from normotensive (Systolic blood pressure = 120 + 3 mmHg; body weight = 478 ñ 7 g, N = 7) and DOCA-hypertensive rats (195 ñ 1O mmHg; 358 ñ 16 g, N = 7). The effects of CPA on resting [Ca2+]i and on caffeine-induced increase in [Ca2+]i after [Ca2+]i depletion and reloading were compared in aortic cells from DOCA and normotensive rats. The phasic increase in [Ca2+]i induced by 20 mM caffeine in Ca2+ -free buffer was significantly higher in DOCA aortic cells (329 ñ 36 nM, N = 5) compared to that in normotensive cells (249 ñ 16 nM, N = 7, P<0.05). CPA (3 muM) inhibited caffeine-induced increases in [Ca2+]i in both groups. When the cells were placed in normal buffer (1.6 mM Ca2+, loading period), after treatment with Ca2+ -free buffer (depletion period), an increase in [Ca2+]i was observed in DOCA aortic cells (45 ñ 11 nM, N = 5) while no changes were observed in normotensive cells. CPA (3 muM) potentiated the increase in [Ca2+]i (l22 ñ 3O nM, N = 5) observed in DOCA cells during the loading period while only a modest increase in [Ca2+]i, (23 ñ 10 nM, N = 5) was observed in normotensive cells. CPA-induced increase in [Ca2+]i did not occur in the absence of extracellular Ca2+ or in the presence of nifedipine. These data show that CPA induces Ca2+ influx in aorta from both normotensive and DOCA-hypertensive rats. However, the increase in [Ca2+]i is higher in DOCA aortic cells possibly due to an impairment in the mechanisms that control [Ca2+]i. The large increase in [Ca2+]i in response to caffeine in DOCA cells probably reflects a greater storage of Ca2+ in the SR.


Subject(s)
Rats , Animals , Male , Caffeine/pharmacology , Calcium/metabolism , Desoxycorticosterone/pharmacology , Enzyme Inhibitors/pharmacology , Hypertension/chemically induced , Indoles/pharmacology , Muscle, Smooth, Vascular/drug effects , Nifedipine/pharmacology , Ion Transport/drug effects , Rats, Sprague-Dawley
6.
Braz. j. med. biol. res ; 27(6): 1413-1417, June 1994.
Article in English | LILACS | ID: lil-319760

ABSTRACT

The relationship between extracellular pH (pHe) alterations and muscle tension was studied in rat anococcygeus muscle. Increased cytosolic calcium levels induced smooth muscle contraction and increased tension. Extracellular alkalinization (pH 8.2) with 20 mM NH4Cl produced a sustained increase in tension of the same magnitude as phenylephrine (PHE)-stimulated contraction (NH4Cl = 22.0 +/- 2.8 mm; PHE = 21.7 +/- 3.1 mm). The muscle relaxed when the pH returned to pH 7.4. This increase in tension seems to be independent of extracellular calcium influx because it was not inhibited in Ca(2+)-free EGTA-PSS. Extracellular acidification with 10 mM sodium acetate, pH 6.8, produced no changes in tension or PHE-stimulated contractile response. The data suggest that pH changes lead to a release of stored intracellular calcium, with a consequent increase in tension.


Subject(s)
Animals , Male , Rats , Calcium , Extracellular Space/metabolism , Muscle, Smooth/metabolism , Muscle Contraction/drug effects , Muscle Contraction/physiology , Hydrogen-Ion Concentration , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Phenylephrine , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL